Index-based Process and Software Quality
Control in Agile Development Projects

Nicole Rauch and Eberhard Kuhn and Holger Friedrich

andrena objects ag
[Nicole.Rauch,Eberhard.Kuhn,Holger.Friedrich] @andrena.de

Abstract. In software development, it is important to assure a high
level of process and software quality. In the agile context, suitable ap-
proaches to measure and analyze these aspects are hard to find. CMMI
and SPICE are too heavyweighted, while EN ISO 9001 is too lightweight.
To fill this gap, andrena objects ag developed ISIS, a navigation system
for process and software quality management that combines several met-
rics. It is based on more than 200 person years of software development
experience. ISIS proved its practicability in several customer projects
and was certified according to EN ISO 9001 in late 2007.

1 Introduction

For software companies, a high quality level of their products is important,
allowing for efficient maintenance and extensibility. Market success relies on an
optimal cost-benefit-ratio. Over the past years, andrena objects ag has established
a continuous quality improvement process. To achieve a high software quality, the
developers’ qualification, motivation, and creativity are crucial. For a satisfactory
process quality, andrena applies XP [Bec03] and Scrum [Sch04]. In addition,
quantitative quality measurements and analyses are highly desirable.

The agile development process followed at andrena is characterized by few but
guiding rules. Existing approaches like CMMI [CKS06] and SPICE [Loo07] are
far too restrictive and inefficient to be applied to an agile process and thus are
aloof the cost-benefit-optimum. EN ISO 9001 [Cas06], on the other hand, defines
too few rules to be useful as guidance in software development since the metric
“customer satisfaction” is the only index controlling the process. In real projects,
the vast amount of available metrics [Kan02] is widely being ignored due to time
restrictions. Life sciences, for example, follow a different path. To evaluate the
water quality, they also feature innumerable metrics, but the analysis only takes
place based on a highly restricted set of indicators. This led us to designing a
method allowing systematic quantitative control and optimization of the process
and software quality based on a small number of metrics. Our goal is to develop
software of adequate quality while at the same time being highly productive.

The contribution of this paper is the presentation of the ISIS navigation
system as well as the selection of metrics and tools it is based upon. Section 2
introduces ISIS, its metrics and underlying tools, presents the integration into
the Scrum process and EN ISO 9001 and gives an experience report.

Metric In PQI|In SQI
customer satisfaction 17 %

Number of bugs 15 %

Deviation from approximated time usage 11 %

Test coverage A 13 % 23%
Packages in cycles A11 % 19%
Average Component Dependency (Class) A 9% 16 %
Classes > 20 methods A 6 %| 10.5 %
Methods > 15 LOC A 6 %| 105 %
Cyclomatic Complexity (num. methods > 5)|A 10 %| 17.5 %
Compiler warnings A 2% 35%

Fig. 1. Metrics incorporated into process and software quality index (PQI and SQI).

2 ISIS

System Overview. To supplement the agile development methods Scrum and
Test-Driven Development, andrena developed ISIS, a navigation system for qual-
ity management. ISIS’ main component is the project logbook. Characteristics
regarding process and software quality are recorded, condensed, and documented
in time series. It offers a continuous comparison to predetermined quality goals.
Erroneous trends can instantaneously be counteracted. ISIS supports developer
teams in keeping their projects on track. ISIS also offers a high degree of trans-
parency to the project management and to the IT management. They have
immediate access to objectified indicators for process and software quality.

Included Metrics. ISIS is based on a number of metrics, i.e. indices that
describe certain aspects of source code. The metrics included in ISIS should
easily be collected and interpreted, and it should be hard to manipulate them.
Furthermore, the selected indicators should cover the overall quality as well as
possible. To keep the analysis manageable, only a small set of indicator metrics
was selected for the evaluation of the software quality. We regard software quality
as being holistic, that is, we assume to be able to draw conclusions regarding
the whole by only looking at parts. The same holds for the process quality.
Although this assumption still lacks scientific validation, we noticed in many
code reviews a strong correlation between the quality of architecture, design, and
coding of software. Fig. 1 lists the included indicator metrics. The condensation
into the two central control indices process quality indexr and software quality
index applies a heuristic based on andrena’s long standing experience in object-
oriented software development.

Customer satisfaction is a highly integrated metric. It is decisive for customer
oriented services such as software development. The external software quality is
indicated by the number of bugs. A bug is defined as behavior that deviates from
a given specification and that occurs at the customer site. Unfortunately, devel-
opers massively repress bugs instead of benefiting from the potential of learning

and avoidance that can be utilized by collecting and analyzing programming er-
rors. The deviation from the approximated time usage was added for two reasons.
It is important for a customer to have some indication for the cost of a task, and
an adequate task approximation is essential in planning. Another indicator for
the external software quality as well as for the maintainability and extensibility
of the code is test coverage. Packages in cycles and average component depen-
dency both indicate the architecture quality. The former represents the quality
at a medium scale while the latter indicates the modularization at the level of
subsystems. The class size represents an application’s design quality as well as
its maintainability and extensibility. Method length and Cyclomatic complexity
indicate the readability and maintainability of the code and therefore the coding
quality, while compiler warnings indicate the workmanship.

The first three indicators are pure process metrics, while the others are soft-
ware metrics. The process quality index (PQI) is based on the values of the three
process metrics in a given time interval as well as on the changes of the software
metrics in the same interval (indicated by A in Fig. 1). This way, the process
quality is determined by current values as well as by recent improvements. The
software metrics underlie the software quality index (SQI) at a given moment.
For example, 20 % of PQI and 35 % of SQI are based on the architecture quality.

The indicators and the indicated properties can also be regarded as aesthetic
criteria, e.g. regarding the proportion of the whole and its parts (modularization,
design, class and attributes), symmetry (architecture) or wellformedness (class
size, method length).

Tool Zoo. We apply several tools to measure the indices and to evaluate the re-
sults as well as for the historiography and visualization. The software metrics are
measured by two tools: Sotograph [Sot] performs automated static analysis, his-
toriography, delta functions, manual identification, and removal of weaknesses,
while EclEmma (freeware) is used to measure the average test coverage and to
identify local deficits at the level of classes and methods. To capture and histori-
cize programming errors, the BugCollector (developed by andrena) is used. The
central instrument for the integration, condensation, visualization and histori-
ography is the project logbook (developed by andrena). For each datapoint, the
Sotograph results are automatically integrated.

Integration into Scrum. Scrum [Sch04] is an agile method to manage work
in a socially complex environment. Two meetings are defined which serve the
continuous improvement of the process. For both meetings, ISIS provides sub-
stantiated input that quantifies qualitative changes. Concrete measurements for
improvement are determined and their implementation is being supervised.

ISIS and EN ISO 9001. EN ISO 9001, besides measuring the customer satis-
faction, requires at least one management report per year. ISIS exceeds these re-
quirements by far. In a monthly report addressed to management and customer,

each team presents the quality indices, their interpretation and measurements
for improvement, if necessary. A transparent production is the result.

User Experience. The introduction of ISIS initiates an intensive discussion of
software quality, metrics and production processes and establishes quality aware-
ness. Measurements can be taken immediately. Transparent production fosters
confidence by management and customer and leads to steadier production. In
all andrena projects the process and software quality was significantly increased
by ISIS. An indispensable prerequisite is a learning-oriented no blame culture.
Due to the limited number of indicators and extensive automation, it only takes
us about one hour per month to determine the quality indices.

3 Conclusions

We presented ISIS, a quality management tool developed and used by andrena.
This tool is based on a select number of metrics that are condensed into two
main indices representing the process and the software quality. This tool is be-
ing applied to all projects at andrena. To our experience it captures the quality
of a piece of software at a given moment accurately and follows its development
process sensitively. Therefore, software companies that are interested in produc-
ing and maintaining high-quality software are likely to benefit from applying
ISIS.

We have not yet been able to find adequate indicators for some aspects.
For example, the working productivity, which is often being measured by ALOC
per time or function points per time, has not yet been integrated. We generally
regard ALOC to be inappropriate: When refurbishing existing systems, one gen-
erally observes a reduction of LOC due to the removal and cleanup of duplicated
code, duplicated logic and unspeakable constructions. In the development of new
applications, this metric fosters a tendency to using copy and paste. Another im-
portant software metric is duplicated code. It is not easily being measured and
interpreted. Future activities will concentrate on integrating this metric.

References

[Bec03] Kent Beck. Extreme Programming. Addison Wesley, 2003.

[Cas06] Michael Cassel. ISO 9001 Qualitdtsmanagement prozessorientiert umsetzen.
Hanser Fachbuchverlag, 2006.

[CKS06] Mary Beth Chrissis, Mike Konrad, and Sandy Shrum. CMMI: Guidelines for
Process Integration and Product Improvement. Addison Wesley, 2006.

[Kan02] Stephen H. Kan. Metrics and Models in Software Quality Engineering.
Addison-Wesley, 2002.

[Loo07] Han Van Loon. Process Assessment and ISO/IEC 15504: A Reference Book.
Springer, 2007.

[Sch04] Ken Schwaber. Agile Project Management with Scrum. Microsoft Press, Red-
mont, Washington, 2004.

[Sot] Sotograph. http://www.software-tomography.de/html/sotograph.html.

